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Abstract -The recourse function in a stochastic program with recourse can be approximated

by separable functions of the original random variables or linear transformations of them.

The resulting bound then involves summing simple integrals. These integrals may them-

selves be difficult to compute or may require more information about the random variables

than is available. In this paper, we show that a special class of functions has an easily

computable bound that achieves the best upper bound when only first and second moment

constraints are available.
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1. Introduction. The recourse problem in stochastic programming is to find the

expected value of minimizing the cost of meeting some set of constraints that may depend

on a random variable, w. In this analysis, we suppose that the resulting function is convex.

In general, we seek to bound the integral of this or any convex function which is too

expensive for numerical integration or, for which, only limited distributional information

is known. Thus, many problems in applied mathematics, such as calculating the average

load on a structure, the present value of a stock option, or the expected performance of a

computer system, fit this framework.

The general problem is to find:

E1(z) = E{f(z(w))} /f(z(w))P(d),()

where z is a random vector mapping the probability space, (0, A, P), onto (RN, BN, F), F

is the distribution function of z, and z E X C . The ezpectatio fractional, Ej(z), can

also be written as a Lebesgue-Stieltjes integral with respect to F:

E1 (z) = faj f(z)dF(z). (1.2)

Difficulties arise in evaluating E! (z) when either the function / is difficult to evaluate or

the distribution function F is not known exactly. In stochastic programming, the function

f is the optimal value of a recourse action which depends on z(w). This function is convex

for the following recourse problem in which the random vector appears as a linear term in

the constraints. In this case,

ZM)= Z(w) a. a. }, (1.3)

where q : R"' - R and g : R" - .#9v are convex. In general, each evaluation of f

requires the solution of a mathematical program. Although many approximation formulas

for integrals (1.2) have been given (see Davis and Rabinowitz (81), the expense in these

computations and the possible high values of N make them inefficient.

In this paper, we concentrate on approximations that first bound f with a separable

function and then compute integrals in each variable separately. We suppose that only first,

second moment and some range information is available and show that a tight bound on

the expectation of a large class of convex functions with known first and second moments

can be obtained in a single linesearch. This result extends results for linear subproblems
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(1.3) and contrasts with previous methods that either require generalized programming

([3,6,14]) or obtain a looser bound through linear approximation ([5]).

Section 2 provides background on previous approaches to bounding expectations. The

generalized moment problem interpretation is given in Section 3. Section 4 presents the

separable approximation used for the bound. Section 5 presents basic results for bounds

on each separable component and some examples of the general class of functions allowed

in this analysis.

2. Background and previous approximations. Many of the approximation

schemes for stochastic programs with recourse are described in Birge and Wets [3] and

Kal [24]. For general functions f, the basic procedures to approximate Ef(z) use some

form of a discrete approximation. for the distribution of z. Numerical integration proce-

dures are often based on the midpoint and the trapezoidal approximations. On an interval,

[a, b], the approximations are improved by dividing [a,b] into subintervals, appropriately

weighting the subintervals and applying the midpoint and trapezoidal approximations on

each subinterval.

A more sophisticated procedure is gaussian quadrature to find an integral formula that

fits all polynomials up to some degree. As noted by Miller and Rice [33], this can be used to

find a discretization with K values that matches the first K + 1 moments of the distribution

of z. To match the first three moments of the uniform distribution on [a,b], for example,

gaussian quadrature selects two points, (a + b)/2.E (V3/6)(b - a), with equal probability,

1/2.

A difficulty with using the gaussian quadrature formulas is that they do not generally

provide bounds on the expectation. Restrictions on higher-order derivatives and Peano's

theorem [34] provide bounds but they require, at least, differentiability of f and a density

function that may not be available. Generalizations of the mid-point and trapezoidal

approximations do, however, obtain bounds on the expectation of a convex function. For

example, Jensen's inequality [23] can be interpreted as a generalization of the mid-point

approximation that provides a lower bound on the expected value of convex f through:

jr -f(z)dF() -2: f( zdF(z)), (23)

where t = fit ZdF(z) is assumed finite.
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Madansky, following Edmundson, ([13], [31]) provided a generalization of the trape-

zoidal approximation, called the Edmundson-Madansky inequality, that gives an upper

bound on the expectation of a convex function. For N = 1, the basic inequality is:

/ f(z)dF(z) < ((b - !)f (a) + (i - a)f(b))
f -N (b -a) '(2.4)

where X = [a, b]. The Edmundson-Madansky inequality (2.4) can also be extended to

multiple dimensions and infinite intervals (see, for example, [1], [15], and [18]).

Refinements of the Jensen and Edmundson-Madansky inequalities are possible by

subdividing the interval (or, more generaily, the region) into smaller pieces on wnich the

bounds can be reapplied as in the traditional mid-point and trapezoidal approximations

(see [3], [17], [21], and [26]). These refinements require additional functional evaluations

and conditional expectations on the subregions. As has been observed, the Jensen lower

bound is generdly reasonably accurate relative to the Edmundson-Madansky upper bound

(e.g., [19]), which requires a number of function evaluations that increases exponentially in

the number of random variables. The primary concern is then in obtaining more accurate

upper bounds without additional computational effort.

A bound for linear recourse problems that requires linear work in the number of the

random variables was introduced in [3] and extended in [4] and [2]. A similar bound also

appears for network recourse problems in Wallace [40]. Related extensions to functions built

on a simplicial decomposition of the function also appear in Duli [10] and Frauendorfer

[16].

This paper builds on the idea of introducing separability into the recourse function. It

extends this idea of separability to the nonlinear recourse problem in (1.3) and assumes only

that first and second moment information is known about each of the random components.

This is especially important when the random components are transformations of some set

of original random variables.

The results here show that bounds on each component are easily computable in a single

linesearch for a broad class of convex functions, if second moment information is available.

We note that these results can also be seen as extensions of Kall's result (251 in this volume

for bounding the optimal value of the linear recourse problem with only first and second

moment information. In both analyses, a generalized moment problem formulation leads

to the bound. This problem is described in the next section.
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3. Generalized moment problem. To obtain bounds that hold for all distributions

with certain properties, we can find

Q E P a set of probability measures on (X, BN) subject to

fX vi(x)Q(dx) <_, i = I...S

(3.1)
fx v,(z)Q(dz) =i i = s + 1 M,

to maximize fX f(z)Q(dz),

where M is finite and the vi are bounded, continuous functions. A solution of (3.1) obtains

an upper bound on the expectation of f with respect to any probability measure satisfying

the conditions above. Problem 3.1 is a generalized moment problem ([29]). When the vi are

powers of x, the constraints restrict the moments of z with respect to Q. In this context,

(3.1) determines an upper bound when only limited moment information on a distribution

is available.

Problem 3.1 can also be interpreted as an abstract linear program since the objective

and constraints are linear functions of the probability measure. The solution is then an

extreme point (see [37] for a discussion of properties) in the infinite dimensional space of

probability measures. The following theorem, proven in (27, Theorem 2.1], gives the explicit

solution properties.

Theorem 3.1. Suppose X is compact. Then the set of feasible measures in (3.1),

Q, is convex and compact (uith respect to the weak topology), and Q is the closure of

the convex hall of the extreme points of Q. If f is continuous relative to X, then an

optimum (maximum or minimum) of fX f(x)Q(dz) is attained at an extreme point of Q.

The ext remal measures of Q are those measures that have finite support, {Z1,... ,zL, With

L < M + 1, such that the vectors,

( lXl) /V1(ZL)
V2(*l) f 2(ZL)

,.., j, (3.2)

sM(Z) 0 VM(ZL)5



are linearly independent.

Kemperman [281 showed that the supremum is attained under more general continuity

assumptions and provides conditions for Q to be nonempty. Dupacova (formerly Nzkovi)

[11, 12, 41] pioneered the use of the moment problem as a bounding procedure for stochastic

programs in her work on a minimax approach to stochastic programming. She showed that

(3.1) attains the Edmundson-Madansky bound (and the Jensen bound if the objective is

minimized) when the only constraint in (3.1) is v1 = z, i.e., the constraints fix the first

moment of the probability measure. She also provided some properties of the solution with

an additional second moment constraint (v2 (z) = X2) for a specific objective function f.

To solve (3.1) generally, we consider a generalized linear programming procedure ( see [7,

Chapter 24]).

Generalized Linear Programming Procedure for the Generalized Moment

Problem (GLP)

Step 0. Initialization. Identify a set of L < M + 1 linearly independent vectors as

in (3.2) that satisfy the constraints in (3.1). (Note that a phase-one objective ([7]) may

be used if such a starting solution is not immediately available. For N = 1, the gaussian

quadrature points may be used as mentioned above.) Let v = L, k = 1, go to 1.

Step 1. Master problem solution. Find Pt >_ 0,...,p. > 0 such that

VEp,=
1=1

" OO=lPI < ai, i = 1,.. ,s,

(3.3)

Evi(XI)PI = 0j, i = 8 +-1.. M, and

z = Ef(zl)pl is maximized.
L=in

Let {p , . ... } attain the optimum in (3.3), and let {G, ir
t ... , r be the asociated
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dual multipliers such that

M

ok + 7rk v,(XI) = f(z), ifp > 0, 1= 1,. ,
i=i

,o' 
( 3 .4 )o + 7 k,,,(--) >_ A(X,), if 0'= , 1 ,.,,

1'h >0, i=.

Step 2. Subproblem solution. Find x"+ ' that maximizes

M

p(Z,9k,irk) =1(z) - - Z ir ,,,(z). (3.5)

If p(Zv+ I, Ok , r k ) >0, let v = P + 1, k k + 1 and go to 1.

Otherwise, stop, {pzk .... pk} are the optimal probabilities associated with {z,, z } in

a solution to [5].

The proof of the convergence of GLP is given in [7, Chapter 24]. This result is used

in [14] to solve a class of problems (3.1). The difficulty in GLP is in the solution of

the subproblem (3.5), which generally involves a noncoavex function. Birge and Wets

[3] describe how to solve (3.5) with constrained first and second moments, if convexity

properties of p can be identified. Cipra (6] describes other methods for this problem based

on discretizations and random selections of candidate points, z,. Dult's (101 gives results

when f is sublinear and has simplicial level sets. Kal (25] gives the results for sublinear,

polyhedral functions with known generators.

In this paper, we first develop a separable bounding approximation for f as defined

in (1.3). We then give conditions so that (3.1) can be solved for this separable function

without requiring the repeated nonconvex optimization in (3.5). We show that bounds can

be obtained for a general recourse problem by bounding several functions in one dimension

that each require only L = 2 points of support that can be identified in one line search.

This result gives bounds on the expectation of f with only O(N) function evaluations.

4. Separable bounds in the general recourse problem. The use of the general-

ized programming formulation is limited in multiple dimensions beca,,", of the difficulty in
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solving subproblem (3.5). These computational disadvantages for large values of N suggest

that a looser but more computationally efficient upper bound on the value of (3.1) may be

more useful than solving (3.1) exactly for large N.

If a separable function, P(z) = - vi(z(i)), is available, it offers an obvious advantage

by only requiring single integrals. In this case, we would like to find v(z) =i v((i))

f(z) where each vi(x(i)) is a convex function. Methods for constructing these functions to

bound the optimal value of a linear program with random right-hand side are discussed in

[2] and (4]. We give below the results for the general problem in (1.3).

Lemma 4.1. 1ff is defined as in (1.3), then f is a convex function Cf x.

Proof: Let yj solve the optimization problem in (1.3) for x, and let Y2 solve the

corresponding problem for X2. Consider z = AX1 + (1 - A)z 2. In this case, g(Ay, + (1 -

A4y2) <5 Ag(Yl)+(1-A)g(y2) <5 AzI+(1-A\)Z2. SO, f(AZt+(-A)X2) <: q(Ayi+(1-A)y2)<

Af(z1 ) + (1 - A)f(z 2), giving the result. a

Let
VW:i) -- NZ(i)e0), (4.1)

which is the the optimal value of a parametric mathematical program. The following

theorem shows that these values supply the separable bound required. Related bounds are

possible by defining vi with othe rright scalar multiples, fAj(x(i)ej) (see [36] for general

Properties), where Z=v Ai = 1. The proof below is easily extended to these cases.

Theorem 4.1. The function v(z) = EN= v,(z(i)) > f(z), where f is defined as in

(1.3).

Proof: In this case, let yj(z(i)) solve (1.3), where x() = N(,)z,. Then,
g(5..V(m): N I (k[(ij) •5E

g( a....) < '=(J)[g(y,(z(i))] < '=i(k)Nz(i)ei = z. Next, let y* solve (1.3)

for : in the right-hand side of the constraints. By feasibility of = - f(z) = q(y*)
FN y.zi 5jN

This results demonstrates that a parametric optimization of (1.3) in i = 1 . N.. N yields

an upper bound on f(z) for any :. Specializations of these bounds for stochastic linear

programs are given in (4]. In these problems, f(z) = minVEa{q T y I Ay = x}. Note that

f is then a sublinear function and that v(z(i)) = f(:(i)ej). The functions vi are found by

solving for q* = min t {q T y I Ay= -e I and letting

-= qtz(i) if z(i) > 0,

-qz'g(i) if x(i) < 0.

• m m | m8



Generalizations of the stochastic linear program bound as in (4] can also be given for

the general bound in Theorem 4.1. For example, we may apply a linear transformation T

to x to obtain u = Tz. The constraints become g(y) < T-1(u). A new bound may be

found by letting j(u(i)) = (1) inf{qrylT(g(y)) ! N(T-1'u(i))}. In linear problems, the
convex hull of several of these bounds obtains good overall approximations (see [4]). We

note that adjusting - to other multipliers A, may also lead to better bounds.

To use any bound of the general type in Theorem 3.2 to bound fRN f(z)dF(z) requires

a bound on ft v,(z(i))dF(z,) or fRu,(u(i))dFu,(u(i)), where F is the marginal distribu-

tion on zi and Fu, is the marginal distribution on u(i). Since function evaluations may

be expensive (solving (1.3)) and distribution information may be limited (especially in the
case of F,), we use the generalized moment problem to obtain bounds on each integral in

R. Generalized linear programming may solve this problem but it can be inefficient. In the

next section, we show that a large class of functions require only two points of support in
the bounding distribution. A single linesearch can determine these points and give a bound

on f over all distributions with bounded first and second moments for the marginals.

5. Two-point support functions. To ease the notation in this section, we develop

bounds on f 'i(z(i))dF,(z(i) by referring to f as a function on R (N = 1). We then

consider the moment problem (3.1) with s = 0, and M = 2 and where the constraints

correspond to known first and second moments. In other words, we wish to find:

U = supQ -E fx f(z)Q(dz)
x zQ(dz) (5.1)

fX Z2Q(dz) Z(2),

where P is the set of probability measures on (X, 5V), the first moment of the true dis-

tribution is i, and the second moment is z(2). The problem is illustrated geometrically in

Figure 1. Here, X = [0,.6 and C = is the convex hull of (z,z 2 ,f(z)) for z E X. The

objective in (5.1) is to find y" - (i, (2), z) E C that maximizes z. A generalization of

CarathLodory's theorem (39]) for the convex hull of a connected set tells us that y* can be

expressed as a convex combination of at most three extreme points of C, giving us a special

case of Theorem 1. Therefore, an optimal solution to (5.1) can be written, {z, p*}, -here

the points of support, z* = {z',z,2 } have probabilities, p° = {p,p;,p;}. An optimal

solution may, however, have two points of support. A function that has this property for a
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given instance of (5.1) is called a two-point support function. We give sufficient conditions

below for a function to have this two-point support property. This property then allows a

simplified solution of (5 1
10 -

08

06

04

02

0

0.4J 0.2
00

Figure 1. The generalized moment problem in R1.

In this characterization, we use a dual problem to (5.1), the semi-infinite program

([18]) that appears, for example, in Chebyshev approximation ([35]). For the one-

dimensional, two-moment constraint problem considered here, this dual is to find 0, irl, r2

such that

B + Ilz + r2 z 2 > f(Z),Vz E X,
(5.2)

and 0 + rlt + 12(2) is minimized.

Note that (5.2) involves three variables and an infinite number of constraints in contrast

to the infinite dimensional, finitely constrained primal problem (5.1). Note also that an

optimal solution to (5.2) is a quadratic function that dominates f and that has minimum

expectation with respect to any probability measure in V.

The optimality conditions on a feasible solution to (5.1), z* = {*, zz}, with asso-

ciated probabilities, p" = {p ,p;,p} , are that there exist dual variables, 6', 7r,, ir;, such

that

0* + s*Z, + 1(4)2 = f(z*) if p; > 0,
(5.3)

9" + ;,+Z + ,Wr 2 > f (z),YV E X,

where the first condition is complementary slackness condition and the second condition

is dual feasibillg. A useful interpretation of these conditions in terms of the function p

defined in (3.5) is that z has a positive probability, p*, only if p(z!,0*, wr) = 0 and z*
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maximizes p over X for fixed (0", ir*). It is convenient to let p(x, O, ir) = f(x) - q(x, 9, r),

wher.- q(z, 9, 7r) = 0 + 7rlx + 1r2z2. The following lemmae give additional properties for an

optimal solution {x*,p*} to (5.1). We assume that f is always convex below.

Lemma 5.1. If z = {£1,Z2,z3} is feasible in (5.1) with corresponding probabilities,

P = {PI, P2, P3}, pi > 0, i = 1, 2,3, then there exists another feasible solution z' = {X1, x4}

with p' = {P1P4} , where X2 < X4 < X3.

Proof: Feasibility of {XI, X2, X3} and {PI, P2, P3} > 0 implies that E?31 p,(z, (Z )2) =

(, x((2)). Consider t(z) such that z 1 (1-t(z))+t(x)z = 2 and w(x) = Z2(1 t(z))+(t(X))z 2.

Note that t(x) = is in (0, 1) for z > i and w(x) is strictly increasing in z for z > f

(w'(z) =- z). Now consider p and q such that p(z 2 - zI)+ q(z3- z)+ X1 = i. Fixing

p in this equation, we can find a corresponding q(p) = . The weightedZ3-Sl

square value as a function of p and q(p) is u(p) = p(zj - z2) + q(p)(z2 - z2) + X2 =

P(z2 - zI)(Z2 - X3) + ( - Tl)(*a + X1) + z1. Since t(z 2 ) > P2 > 0 and X3 > X2 > z1,

w(X2) = u(t(Z2)) < u(p2) < u(O) = w(:a). So, for w continuous atnd increasing, there

exists X4 such that w(z 4 ) = u(p 2 ) = x(2) and X2 < *4 < Z3. Letting p' {(1 - t(z 4 ), t(z 4 )}

completes the proof. v

The next lemma considers f with a derivative f' that has local convexity or concav-

ity properties. These properties form the basis for the bounding approach given in this

paper.

Lemma 5.2.If p(, i) = 0 for some (9, *) feasible in (4.1), i is in the interior of

X, and f' is convex on A = (4 - q, i) for some q1 > 0, then f'(t) > q'(t, j, #) for t E A.

Also, if f' is concave on B = (.*, + q) for some ,1 > 0, then f'(t) < q'(t, j, *) for t E B.

Proof: First, we assume f' is convex on A = (& - q/,1) for some ,l > 0. Let A(.) =

p(.,B,*) and let q(., 0, J). Note that q is twice differentiable on X (4'(z) = 1 +

27r2z, j"(z) = 272) and that, for f convex, f is differentiable on all but a countable number

of points in X. Moreover, since f, is convex on A, f is also continuously differentiable

on A. Hence, ' exists on A. We can let g-_(i) = limto 0'(. - t). We can also define

(= limt0jo0'(. + t) when f is concave on B. Note that 4*(i) = f,(i) - q'(i).

11



If A(i) = 0 for feasible (0, *) in (5.2), then i maximizes 5 over X. Therefore, 0 e

co[b (i),j.(i)]. By convexity off, f'.(-) _ f'(.i), A .) 2! (.), and, thus, A'-(i) < 0.

Suppose #'- (i) < 0, then 0(i - t) + ,Y(.i - s)(t) = A(i) for all t E (0, q) and some 0 < s < t.

By A' continuous in this interval, there exists c such that 0'(i - s) < 0 for all 0 < s < C.

For 0 < t < c, we would have A(fi - t) > 0(i), contradicting the maximality of i. Hence,

01()= 0.

By applying the mean value theorem to 0 and 0', we also have that 0(i - t) = j(i) +

- s)(-t) = 1 (i) + (-t)(-s)(y(r) - 4"(r)), where 0 < r < s < t and y(r) E [(f')' .( -

r),(f )'( - r)]. Letting r vary with t as r(t) and noting that limt_0 y(r(t)) = (f')'-.(i)

and ,(i - t) - A(i) < 0 for t close to 0, we obtain 0 > (f')'.(i) - i"(i). Now, consider

- t) = f'(i - t) - - t) = f'(i) - 4'(i) + (-t)(y(i - s) - 4"(i - s)) where

y(i - s) E [(f')'(k - s), (f')' (i - s)]. By f' convex on A and 4"(i - s) = 4"() = i-2 for

any s, yV- s) - 4'V - s) < (f')'.() - 4"() < 0. So, f'(i - t) - 4'(i - t) > 0 for all

t E (0, q}). A similar argument holds if f is concave on B. .

The previous lemma considers local convexity properties of f' when it exists. The

following results refer to functions with derivatives that are convex and then concave.

Lemma 5.3. Let g(z) = h(z) - c(s) be a function such that h(z) is increasing and

upper semi-continuous on R, h(z) is convex on (-c, y) and concave on (y, 00), and c(z)

is an affine function on R. Then there exists a partition of (-00, 00) into subintervals,

11 = (-oo,0a], 12 = (a,, a2), 13 = [a2, a3), 14 = [a3, +oo), -0 < a, a a3 < 00, such

that g(z) > 0 for all z E U1 IU and g(z) < 0 for all : E 12 U 14. (When any of a,, a2, a3

= ±00, then we interpret the interval as open at the corresponding value of ±00.)

Proof: First note that g is continuous on (-cc, y) and (y, cc). By convexity and for

h increasing at y, S" = {Ig(z) < O,z < y} = (a, b] (or 0) for some -00 < a < b < y

(when a = -oo and when b = y, the interval is open at a or b respectively). Similarly, by

concavity on (y,cc), So = {zg(z) > 0,z > y) = (c,d] (or 0) for some cc > d > c > y

(where we have an open interval if d = cc). Note that if b < y, then g(z) > 0 on [b, y],

so c = y. From this observation, if ST and So+ are not empty, then g is nonnegative on

(-oo, a] and either [b, d] or [c, d] by continuity at a and b if b < y. If S" = 0, then So+ # 0,

and g is nonnegative on (-cc, d], since g is increasing at y. If So+ = 0, then g is nonegative

on (-oo,a]. Thus, let a, =aif S #6, a =dif$S =@, a2 =bifSo #0and b< y,
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a2 =cifSo $0andb=y, a2 =ooif S =0, and a3 =difSo  -0, S+ $0, a3 =00 if

5, = 0 or So+ = 0. This yields the regions in the lemma. a

The next lemma considers the case where g = p' is constant on an interval. In the

following, we use the notation X = [a,b) for convenience. It is assumed that this also

includes the cases X = (-0o, b], X = [a, +oo), and X = (-oo, +oo) unless explicitly stated

otherwise.

Lemma 5.4. If f is convex on X = [a,b] with derivative f' defined as a convex

function on [a, c) and as a concave function on (c, b] for a < c < b and if p(z, q, *) = 0

for some (6, *) feasible in (. .1) and for all x E (i - c, .i + c) for some i E X and e > 0,

then there exists an interval D D (.i - ci + c) such that p(x,O, *) = 0 for all z E D and

p(x, j, J) < 0 for all z 0 the closure of D.

Proof- Let D = (d, e) be the largest open interval including (i - c, -+ c) such that

(z)= 0 for all z E D. First, we show that c E [d, el. If not, then suppose d > c. In this

case, f' is concave on (c,e]. For z E D, O(z) = 0, so f'(z) = 4'(z) and f"(z) = 4"(x).

From Lemma 5.1, 4'(z) _> f'(z) on (c,e), and f'(z) - 4'(z) < 0 on (c,d) by concavity.

Thus, A(i) = (d) < O(z) for any z E (c, d), which contradicts the maximality of i. Hence,

d < c. Symmetrically, e > c.

By Lemma 5.2 and f"s implied semicontinuity at the endpoints, 3 > 0 on [a, c) and

0' < 0 on (c,b]. By convexity of f' on (a,c), the set {zlf'(z) < 4'(z),a < z < c} = [d,c),

if d < a. Hence, jY(z) > 0 on (a,d). Similarly, g'(z) < 0 on (e,b]. Thus, j(z) < 0 on (a,d)

and (e, b]. a

The convex-concave property is now used to derive our main result about two-point

support functions.

Theorem 5.1. If f is convex with derivative f' defined as a convex function on (a, c)

and as a concave function on (c, b) for X = [a, b] and a < c < b, then there exists an opti-

mal solution to (4.1) with at most two support points, {z 1 , X2}, with positive probabilities,

{P1,P2}.

Proof. Let {, J} be an optimal solution to (5.1). First, assume that there does not
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exist c > 0, i E (a,b) such that p(z,,J) = 0 for allz E (1- , +e). By Lemmas

5.1 and 5.3, the only isolated points where A could be 0 and maximized are a, and a3 if

[a. b] D 12 U 13. If [a, b] b 12, then a can replace a, and if [a, b] 6 13, then b can replace a3,

but, in either case, at most two points meet the conditions for optimality.

If there exists c > 0, i E (a, b) such that p(z, 6, *) = 0 for all z E (i - e, i + c), then

Lemma 5.4 implies that any optimal solution {X1, Z2, Z3} must be in the closure of D and

that A(z) = 0 for all z E D. By Lemma 5.2, we can select z4 in (z2, z 3 ) such that there

exists {PI,P4} so that {Z1,X4,p1,P4} is feasible in (5.1). The optimality conditions still

hold for (z4) = 0. Hence, {Z,:4,PI,P41 is optimal in (5.1).e

A corollary of Theorem 5.1 is that any function f that has a convex or concave deriva-

tive has the two-point support property. The class of functions that meets the criteria of

Theorem 5.1 contains many useful examples. Some of these functions are given below:

1. Polynomials defined over ranges with at most one third derivative sign change.

2. Exponential functions of the form, coe"', co 2: 0.

3. Logarithmic functions of the form, log(cx), for any k > 0.

4. Certain hyperbolic functions such as sinh(cx), c, z 0 0, cosh(cz).

5. Certain trigonometric and inverse trigonometric functions such as tan-I(cz), c, z > 0.

In fact, Theorem 5.1 can be applied to provide an upper bound on the expectation

of any convex function with known third derivative when the distribution function has a

known third moment, Z(3). Suppose a > 0 (if not, then this argument can be applied on

[a, 01 and [0, b]), then let g(s) = 3 + f(z). The function g is still convex on [0, b) for

a > 0. By defining a > (-1/0) min(0, inf4t(,.] f"(z)), y' is convex on [a, b], and an upper

bound, UB(g), on ET(z) has a two-point support. The expectation of f is then bounded

by

E,(z) < UB(g) - az (3). (5.4)

The conditions in Theorem 2 are only sufficient for a two-point support function. They

are not necessary. The following function, for example, has an optimal two-point support
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at z" = {1/3, 1} for any corresponding feasible p, and p2 when X = [0, 1].

6/5 - 4z + 5z2 i 0:< z < .2,
) 2z + 1 if .2 < x < .4,

= (2/5)z- 8z 2 + Oz if .4 < z < .6,
I-4x + 4x2 if .6 < X < 1.

The function defined in (5.5) does not, however, meet the conditions of Theorem 5.1. This

and other two-point support functions can always be constructed by fixing 0, it1 , I'2 and

considering any function f(z) :_ q(z, 8, ir) such that f(zi) = q(1, , iT), f(Z2) = q(z2, 9, 7r),

Ax, +(I - A)z2 = 1, and Azf+(I- A)z 2 = X(2) for some 0 < A < 1. Any convex f

satisfying these conditions corresponds to 6, irl, i"2 optimal in (5.2). No other conditions

on the function are necessary.

Note also that not all functions are two-point support functions (although bounds

using (5.4) are available). A function requiring three support points, for example, is f(z) =

(1/2)- T1/4) - (z - (1/2))2. This function and its optimal dominating quadratic function

are illustrated in Figure 2.

/

Figure 2. A function requiring three support points.

Given that a function is a two-point support function, the points {zt, z2) can be found

using a line search to find a maximum. For example, if some candidate z, < i is given,

then a feasible corresponding z2 is
*(2) - .jt
2 ) = X, (5.6)

where P1 = (Z2 - Z)/(*2 - Z*) and p2 = - Pl. Note that the problem is obviously not

feasible if (Z*, Z2) % f. The solution of (5.1) then reduces to maximizing :

7(xl) = p(zl)f(zi)+ p2(z1)f(:2(z )) subject to z* E (a,*). (5.7)
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A line search to find the maximum in (4.7) can be performed efficiently using, for

example, Lemarichal and Mifflin's procedure in [30] if -Y E C2 or Mifflin and Strodiot's [32]

method without derivatives. Table 1 gives the values (under "2-M") that were obtained by

this procedure for three two-point support functions with distributions on [0, 1]. Figures 3-

.5 illustrate that the optimal points, {z,, z;}, may be at either endpoint or interior to [0, 1].

The table gives the Jensen lower bound and the expectation for a random variable with

beta distribution (under "Beta") with the given first and second moments for comparison.

The Edmundson-Madansky upper bound ("E-M") is also provided. The "S-L" value

(for "semi-linear bound") given in Table 1 corresponds to bounding f with a semi-linear

function that has the form:

AX) q-(c - ) if < c,

q+(X c) ifz>c,

where q+ + q- > 0. This type of function is useful because a line search is not necessary

for solving (5.7). The support points can be calculated analytically by observing that the

conditions of Theorem 2 are met and by finding the optimal z, in (5.7) as a function of c.

The results depend on the interval, [a, b]. If [a, b] = [0, 1], then consider the nonintersecting

intervals, A = (0, z(2)/(2i)), B = [z()/(2i), (I-z(2 ))/(2(1-i))], and C = ((1-z(2))/(2(1-

2)), 1). The points of support for a semi-linear, convex function defined on [0, 1] are

{0, z(2)/.} if c E A,
{z,;} z {c-d,c+d} ifcE B, (5.8)

{(O - Z(2))/(1 - ), 1} if C E C,

where d = v/cT - 2c* + zM. This result can be obviously extended to all finite intervals.

It results from using (5.6) and differentiating y with respect to z, in (5.7).

Infinite intervals can also be solved analytically for semi-linear, convex functions. For

X = [0, oo) , the results are as in (5.8) with B = [z(2)/(22), oo) and C = 0. For the interval

(-oo, oo), the points of support are those for interval B in (5.8). We note that special cases

for these supports of semi-linear, convex functions were considered in [11], [22], and [38].

Semi-linear, convex functions are common in decision problems to represent penalties

for being above or below a preferred value, c. They can also be used, however, to provide

bounds for other convex functions when only the first and second moments of the distri-
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Table 1. Bounding values

Function f, z (2) Jensen Beta 2-M S-L E-M
e-Z 0.500, 0.333 0.607 0.622 0.624 0.651 0.684
X3  0.833, 0.714 0.579 0.625 0.629 0.675 0.833
sin(r(z + 1)) 0.500, 0.333 0.000 0.363 0.384 0.577 1.000
+1

Figure 3. Optimal bo nding function for e - '.

I

Figure 4. Optimal bounding function for 33.

bution function are known. Results from using these functions in problems with linear

recourse appear in [2,3,40].

We conclude with an example for bounding a nonlinear recourse function with the

form in (1.3). We suppose in this cae that

min,,,, 2 (y - 1)2 +(y2 - 2)2

f(z(1),z(2)) = .t. Y2 + 2-1 < z(1) (5.9)(y, -1) 2  +z I < (2).

This problem may correspond to determining a performance characteristic of a part that
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Figure 5. Optimal bounding function for sin(r(z + 1)) + 1.

is machined by two circular motions centered at (0, 0) and (1, 0) respectively. Here, the

performance characteristic is proportional to the distance from the finished part to another

object at (2, 1). The square of the radii of the tool motions is z(i) + I where z(i) is a

nonnegative random variable associated with the machines' precision. Figure 6 illustrates

the solutions for x(i) =0 and x(i) I for i =1, 2.

0. (z l)= 4+ LL-) if(.<O n

ifz(1 >0.5

2f(-Ip +1)2 4~) (120s if z() >50.5- (4).

18



Nul (x(1)) Nu2(x(2))

0.75 0.76
0,,0.76

0.65 0.766

0.6 0.765,

0.764

x (1) 2
0.1 0.2 0.3 0.4 0.5 0.6 0.x.0 .02.0).0 .010.2 0 0 7- M02..4300604 8 :

Figure 7. The bounding functions v, and v 2 .

These functions are illustrated in Figure 7. Their third derivatives are nonpositive so the

first derivative of each i is concave, meeting the conditions for two-point support. The

functions 7 for z(1) and z(2) are given in Figure 8. Notice that the maximum occurs at 0

in each case. The resulting upper bound on E1 (z) is then (1.107 + 1.529)/2 = 1.318. We

can compare this to the lower bound of f(2) = 0.822 to bound the expected performance.

In comparing to other bounds, the best available bound knowing only the mean and the

nonnegative range is 1.529, the value at (0, 0), since a distribution can meet the range and

mean conditions with a probability p mass at (0, 0), probability (1-p)q at (2(l), O)/q(l-p),

and probability (1 - p)(1 - q) at (0,i(2))/(1 - p)(1 - q), where 0 < q < l and p may be

become arbitrarily close to 1.

Gamma Gamma

0.54, 0.765

0.5 0 0.76 5

0.5 0.764

0.51 0.7635

0 20\(l) 0.02 0.04 0.06 0.'08 ' 1 (2)

Figure 8. The 7 functions for z(l) and z(2).

6. Conclusions. This paper describes a bound on the general recourse problem and

a resulting bound on the expectation of convex functions when only limited distributional

information is available. Given the difficulties in estimating random phenomenon, limited
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information in terms of bounds on the mean and second moments of distributions is a gen-

eral practical situation. The bounds provided in this paper allow for efficient computation.

We note that these procedures can be extended to lower bounds on the expectation of

concave functions obviously. Since the Jensen inequality is the solution of the generalized

moment problem to minimize the expectation of a convex function subject to a first mo-

ment equality constraint and an upper bound on the second moment constraint, upper and

lower bounds are computable on the expectation of general functions that can be expressed

as linear combinations of convex and concave functions. Given this extension, the use of

separable convex functions and the two-point support bounds apply to a wide range of

problems.
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